printf 宏,实现多样式打印
由黑魔法令该得来,在rtt 和 nrf log的基础上实现
1 | typedef enum |
更全能的内存打印
V1版本
- mem_print.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// 基本内存打印宏
// 高级内存打印(带地址偏移和ASCII)
// 按字节长度拼接打印
// 按数据类型打印
// 通用结构体打印宏
// 注册结构体布局信息
// 结构体成员信息
typedef struct {
const char* name;
size_t offset;
size_t size;
const char* type;
} struct_member_t;
// 结构体布局描述
typedef struct {
const char* struct_name;
struct_member_t* members;
size_t member_count;
size_t struct_size;
} struct_layout_t;
// 函数声明
void print_memory_hex(const uint8_t* data, size_t len);
void print_memory_advanced(const uint8_t* data, size_t len);
void print_memory_by_size(const uint8_t* data, size_t len, size_t byte_size);
void print_memory_as_type(const uint8_t* data, size_t len, const char* type_name);
void print_struct_generic(const uint8_t* data, const char* struct_name, size_t struct_size);
size_t get_type_size(const char* type_name);
void print_single_element(const uint8_t* data, const char* type_name);
void register_struct_layout(const char* struct_name, struct_member_t* members, size_t member_count);
void init_struct_registry(void);
void cleanup_struct_registry(void);
// 内置类型支持 - mem_print.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
static struct_layout_t* struct_registry[MAX_STRUCT_LAYOUTS];
static size_t struct_registry_count = 0;
void print_memory_hex(const uint8_t* data, size_t len) {
for (size_t i = 0; i < len; i++) {
printf("%02X ", data[i]);
if ((i + 1) % 16 == 0) printf("\n");
}
if (len % 16 != 0) printf("\n");
}
void print_memory_advanced(const uint8_t* data, size_t len) {
const uint8_t* base_addr = data;
for (size_t i = 0; i < len; i += 16) {
// 打印地址偏移
printf("%08zX: ", i);
// 打印十六进制
for (size_t j = 0; j < 16; j++) {
if (i + j < len) {
printf("%02X ", data[i + j]);
} else {
printf(" "); // 对齐空格
}
if (j == 7) printf(" "); // 中间分隔
}
printf(" ");
// 打印ASCII字符
for (size_t j = 0; j < 16; j++) {
if (i + j < len) {
uint8_t c = data[i + j];
if (c >= 32 && c <= 126) { // 可打印字符
printf("%c", c);
} else {
printf("."); // 不可打印字符用点代替
}
} else {
printf(" ");
}
}
printf("\n");
}
}
void print_memory_by_size(const uint8_t* data, size_t len, size_t byte_size) {
size_t elements = len / byte_size;
const uint8_t* base_addr = data;
for (size_t i = 0; i < elements; i++) {
const uint8_t* element_addr = data + i * byte_size;
printf("%08zX: ", (size_t)(element_addr - base_addr));
switch (byte_size) {
case 1:
printf("0x%02X", *(const uint8_t*)element_addr);
break;
case 2:
printf("0x%04X", *(const uint16_t*)element_addr);
break;
case 4:
printf("0x%08X", *(const uint32_t*)element_addr);
break;
case 8:
printf("0x%016llX", *(const uint64_t*)element_addr);
break;
default:
// 对于不支持的字节大小,直接打印原始字节
printf("Raw: ");
for (size_t j = 0; j < byte_size; j++) {
printf("%02X", element_addr[j]);
}
break;
}
printf("\n");
}
}
size_t get_type_size(const char* type_name) {
if (strcmp(type_name, TYPE_INT8) == 0 ||
strcmp(type_name, TYPE_UINT8) == 0 ||
strcmp(type_name, TYPE_CHAR) == 0)
return 1;
if (strcmp(type_name, TYPE_INT16) == 0 ||
strcmp(type_name, TYPE_UINT16) == 0)
return 2;
if (strcmp(type_name, TYPE_INT32) == 0 ||
strcmp(type_name, TYPE_UINT32) == 0 ||
strcmp(type_name, TYPE_FLOAT) == 0)
return 4;
if (strcmp(type_name, TYPE_DOUBLE) == 0)
return 8;
// 检查注册的结构体
for (size_t i = 0; i < struct_registry_count; i++) {
if (strcmp(struct_registry[i]->struct_name, type_name) == 0) {
return struct_registry[i]->struct_size;
}
}
return 1; // 默认1字节
}
void print_single_element(const uint8_t* data, const char* type_name) {
if (strcmp(type_name, TYPE_INT8) == 0)
printf("%d", *(const int8_t*)data);
else if (strcmp(type_name, TYPE_UINT8) == 0)
printf("%u", *(const uint8_t*)data);
else if (strcmp(type_name, TYPE_INT16) == 0)
printf("%d", *(const int16_t*)data);
else if (strcmp(type_name, TYPE_UINT16) == 0)
printf("%u", *(const uint16_t*)data);
else if (strcmp(type_name, TYPE_INT32) == 0)
printf("%d", *(const int32_t*)data);
else if (strcmp(type_name, TYPE_UINT32) == 0)
printf("%u", *(const uint32_t*)data);
else if (strcmp(type_name, TYPE_FLOAT) == 0)
printf("%.6f", *(const float*)data);
else if (strcmp(type_name, TYPE_DOUBLE) == 0)
printf("%.6lf", *(const double*)data);
else if (strcmp(type_name, TYPE_CHAR) == 0)
printf("'%c'", *(const char*)data);
else
printf("0x%02X", *data);
}
void print_memory_as_type(const uint8_t* data, size_t len, const char* type_name) {
size_t type_size = get_type_size(type_name);
size_t elements = len / type_size;
const uint8_t* base_addr = data;
for (size_t i = 0; i < elements; i++) {
const uint8_t* element_addr = data + i * type_size;
printf("%08zX: ", (size_t)(element_addr - base_addr));
print_single_element(element_addr, type_name);
printf("\n");
}
}
void register_struct_layout(const char* struct_name, struct_member_t* members, size_t member_count) {
if (struct_registry_count >= MAX_STRUCT_LAYOUTS) {
fprintf(stderr, "Error: Struct registry full\n");
return;
}
struct_layout_t* layout = malloc(sizeof(struct_layout_t));
layout->struct_name = struct_name;
layout->members = members;
layout->member_count = member_count;
// 计算结构体大小(假设最后一个成员决定大小)
size_t max_offset = 0;
size_t max_size = 0;
for (size_t i = 0; i < member_count; i++) {
size_t member_end = members[i].offset + members[i].size;
if (member_end > max_offset) {
max_offset = member_end;
max_size = member_end;
}
}
layout->struct_size = max_size;
struct_registry[struct_registry_count++] = layout;
}
void print_struct_generic(const uint8_t* data, const char* struct_name, size_t struct_size) {
// 查找注册的结构体布局
struct_layout_t* layout = NULL;
for (size_t i = 0; i < struct_registry_count; i++) {
if (strcmp(struct_registry[i]->struct_name, struct_name) == 0) {
layout = struct_registry[i];
break;
}
}
if (layout) {
// 打印结构体成员信息
printf("Member layout:\n");
for (size_t i = 0; i < layout->member_count; i++) {
struct_member_t* member = &layout->members[i];
const uint8_t* member_addr = data + member->offset;
printf(" +%04zX: %-12s %-10s = ",
member->offset, member->name, member->type);
// 根据类型打印成员值
if (strcmp(member->type, TYPE_INT32) == 0)
printf("%d", *(const int32_t*)member_addr);
else if (strcmp(member->type, TYPE_UINT32) == 0)
printf("%u", *(const uint32_t*)member_addr);
else if (strcmp(member->type, TYPE_INT16) == 0)
printf("%d", *(const int16_t*)member_addr);
else if (strcmp(member->type, TYPE_UINT16) == 0)
printf("%u", *(const uint16_t*)member_addr);
else if (strcmp(member->type, TYPE_FLOAT) == 0)
printf("%.2f", *(const float*)member_addr);
else if (strcmp(member->type, TYPE_DOUBLE) == 0)
printf("%.2lf", *(const double*)member_addr);
else if (strcmp(member->type, TYPE_CHAR) == 0) {
printf("'%c'", *(const char*)member_addr);
if (member->size > 1) {
printf(" (string: \"");
for (size_t j = 0; j < member->size && member_addr[j] != '\0'; j++) {
printf("%c", member_addr[j]);
}
printf("\")");
}
}
else {
// 未知类型,打印原始字节
printf("0x");
for (size_t j = 0; j < member->size; j++) {
printf("%02X", member_addr[j]);
}
}
printf("\n");
}
printf("\n");
}
// 总是打印原始内存布局
printf("Raw memory layout:\n");
print_memory_advanced(data, struct_size);
}
void init_struct_registry(void) {
struct_registry_count = 0;
for (int i = 0; i < MAX_STRUCT_LAYOUTS; i++) {
struct_registry[i] = NULL;
}
}
void cleanup_struct_registry(void) {
for (size_t i = 0; i < struct_registry_count; i++) {
free(struct_registry[i]);
}
struct_registry_count = 0;
}
```
3. main.c
```c
// 示例结构体定义
typedef struct {
int32_t id;
float score;
char name[16];
uint16_t flags;
double timestamp;
} example_struct_t;
// 另一个示例结构体
typedef struct {
uint8_t version;
uint32_t checksum;
char tag[8];
int16_t values[4];
} complex_struct_t;
// 注册example_struct_t的布局信息
static struct_member_t example_members[] = {
{"id", offsetof(example_struct_t, id), sizeof(int32_t), TYPE_INT32},
{"score", offsetof(example_struct_t, score), sizeof(float), TYPE_FLOAT},
{"name", offsetof(example_struct_t, name), 16, TYPE_CHAR},
{"flags", offsetof(example_struct_t, flags), sizeof(uint16_t), TYPE_UINT16},
{"timestamp", offsetof(example_struct_t, timestamp), sizeof(double), TYPE_DOUBLE}
};
// 注册complex_struct_t的布局信息
static struct_member_t complex_members[] = {
{"version", offsetof(complex_struct_t, version), sizeof(uint8_t), TYPE_UINT8},
{"checksum", offsetof(complex_struct_t, checksum), sizeof(uint32_t), TYPE_UINT32},
{"tag", offsetof(complex_struct_t, tag), 8, TYPE_CHAR},
{"values", offsetof(complex_struct_t, values), sizeof(int16_t) * 4, TYPE_INT16}
};
int main() {
// 初始化结构体注册表
init_struct_registry();
// 注册结构体布局
REGISTER_STRUCT(example_struct_t, example_members);
REGISTER_STRUCT(complex_struct_t, complex_members);
// 测试数据
printf("=== 测试数据初始化 ===\n");
uint8_t test_data[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68,
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77
};
int32_t int_data[] = {100, -200, 300, -400, 500};
float float_data[] = {1.1f, -2.2f, 3.3f, -4.4f, 5.5f};
printf("=== 基本内存布局打印 ===\n");
PRINT_MEM(test_data, sizeof(test_data));
printf("\n=== 高级内存打印(带地址偏移和ASCII) ===\n");
PRINT_MEM_ADV(test_data, sizeof(test_data));
printf("\n=== 按字节长度拼接打印 ===\n");
PRINT_MEM_BY_SIZE(test_data, sizeof(test_data), 1); // 1字节
printf("---\n");
PRINT_MEM_BY_SIZE(test_data, sizeof(test_data), 2); // 2字节
printf("---\n");
PRINT_MEM_BY_SIZE(test_data, sizeof(test_data), 4); // 4字节
printf("---\n");
PRINT_MEM_BY_SIZE(test_data, sizeof(test_data), 8); // 8字节
printf("\n=== 按数据类型打印 ===\n");
PRINT_MEM_AS_TYPE(int_data, sizeof(int_data), int32_t);
printf("---\n");
PRINT_MEM_AS_TYPE(float_data, sizeof(float_data), float);
printf("\n=== 结构体打印演示 ===\n");
// 创建测试结构体
example_struct_t test_struct = {
.id = 12345,
.score = 95.5f,
.name = "Hello World!",
.flags = 0xABCD,
.timestamp = 123456789.123
};
complex_struct_t complex_struct = {
.version = 2,
.checksum = 0xDEADBEEF,
.tag = "TEST",
.values = {100, -200, 300, -400}
};
printf("--- example_struct_t ---\n");
PRINT_STRUCT(&test_struct, example_struct_t);
printf("--- complex_struct_t ---\n");
PRINT_STRUCT(&complex_struct, complex_struct_t);
printf("\n=== 数组结构体演示 ===\n");
example_struct_t struct_array[2] = {
{1, 80.5f, "First", 0x1111, 111.111},
{2, 90.5f, "Second", 0x2222, 222.222}
};
PRINT_MEM_AS_TYPE(struct_array, sizeof(struct_array), example_struct_t);
// 清理资源
cleanup_struct_registry();
return 0;
}
V2
- mem_print.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
// 基本内存打印宏
// 高级内存打印(带地址偏移和ASCII)
// 按字节长度拼接打印
// 按数据类型打印
// 直接结构体打印宏 - 无需注册!
// 增强版结构体打印(带类型名)
// 函数声明
void print_memory_hex(const uint8_t* data, size_t len);
void print_memory_advanced(const uint8_t* data, size_t len);
void print_memory_by_size(const uint8_t* data, size_t len, size_t byte_size);
void print_memory_as_type(const uint8_t* data, size_t len, const char* type_name);
size_t get_type_size(const char* type_name);
void print_single_element(const uint8_t* data, const char* type_name); - mem_print.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
void print_memory_hex(const uint8_t* data, size_t len) {
for (size_t i = 0; i < len; i++) {
printf("%02X ", data[i]);
if ((i + 1) % 16 == 0) printf("\n");
}
if (len % 16 != 0) printf("\n");
}
void print_memory_advanced(const uint8_t* data, size_t len) {
const uint8_t* base_addr = data;
for (size_t i = 0; i < len; i += 16) {
// 打印地址偏移
printf("%08zX: ", i);
// 打印十六进制
for (size_t j = 0; j < 16; j++) {
if (i + j < len) {
printf("%02X ", data[i + j]);
} else {
printf(" "); // 对齐空格
}
if (j == 7) printf(" "); // 中间分隔
}
printf(" ");
// 打印ASCII字符
for (size_t j = 0; j < 16; j++) {
if (i + j < len) {
uint8_t c = data[i + j];
if (c >= 32 && c <= 126) { // 可打印字符
printf("%c", c);
} else {
printf("."); // 不可打印字符用点代替
}
} else {
printf(" ");
}
}
printf("\n");
}
}
void print_memory_by_size(const uint8_t* data, size_t len, size_t byte_size) {
size_t elements = len / byte_size;
const uint8_t* base_addr = data;
for (size_t i = 0; i < elements; i++) {
const uint8_t* element_addr = data + i * byte_size;
printf("%08zX: ", (size_t)(element_addr - base_addr));
switch (byte_size) {
case 1:
printf("0x%02X", *(const uint8_t*)element_addr);
break;
case 2:
printf("0x%04X", *(const uint16_t*)element_addr);
break;
case 4:
printf("0x%08X", *(const uint32_t*)element_addr);
break;
case 8:
printf("0x%016llX", *(const uint64_t*)element_addr);
break;
default:
// 对于不支持的字节大小,直接打印原始字节
printf("Raw: ");
for (size_t j = 0; j < byte_size; j++) {
printf("%02X", element_addr[j]);
}
break;
}
printf("\n");
}
}
size_t get_type_size(const char* type_name) {
if (strcmp(type_name, "int8_t") == 0 ||
strcmp(type_name, "uint8_t") == 0 ||
strcmp(type_name, "char") == 0)
return 1;
if (strcmp(type_name, "int16_t") == 0 ||
strcmp(type_name, "uint16_t") == 0)
return 2;
if (strcmp(type_name, "int32_t") == 0 ||
strcmp(type_name, "uint32_t") == 0 ||
strcmp(type_name, "float") == 0)
return 4;
if (strcmp(type_name, "double") == 0)
return 8;
return 1; // 默认1字节
}
void print_single_element(const uint8_t* data, const char* type_name) {
if (strcmp(type_name, "int8_t") == 0)
printf("%d", *(const int8_t*)data);
else if (strcmp(type_name, "uint8_t") == 0)
printf("%u", *(const uint8_t*)data);
else if (strcmp(type_name, "int16_t") == 0)
printf("%d", *(const int16_t*)data);
else if (strcmp(type_name, "uint16_t") == 0)
printf("%u", *(const uint16_t*)data);
else if (strcmp(type_name, "int32_t") == 0)
printf("%d", *(const int32_t*)data);
else if (strcmp(type_name, "uint32_t") == 0)
printf("%u", *(const uint32_t*)data);
else if (strcmp(type_name, "float") == 0)
printf("%.6f", *(const float*)data);
else if (strcmp(type_name, "double") == 0)
printf("%.6lf", *(const double*)data);
else if (strcmp(type_name, "char") == 0)
printf("'%c'", *(const char*)data);
else
printf("0x%02X", *data);
}
void print_memory_as_type(const uint8_t* data, size_t len, const char* type_name) {
size_t type_size = get_type_size(type_name);
size_t elements = len / type_size;
const uint8_t* base_addr = data;
for (size_t i = 0; i < elements; i++) {
const uint8_t* element_addr = data + i * type_size;
printf("%08zX: ", (size_t)(element_addr - base_addr));
print_single_element(element_addr, type_name);
printf("\n");
}
} - main.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
// 示例结构体定义
typedef struct {
int32_t id;
float score;
char name[16];
uint16_t flags;
double timestamp;
} example_struct_t;
// 另一个示例结构体
typedef struct {
uint8_t version;
uint32_t checksum;
char tag[8];
int16_t values[4];
example_struct_t nested; // 嵌套结构体
} complex_struct_t;
// 简单结构体
typedef struct {
char a;
int b;
short c;
} simple_struct_t;
int main() {
printf("=== 简化版内存打印演示 ===\n");
printf("无需注册,直接打印任意结构体!\n\n");
// 测试数据
uint8_t test_data[] = {
0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47, 0x48,
0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68
};
int32_t int_data[] = {100, -200, 300, -400, 500};
float float_data[] = {1.1f, -2.2f, 3.3f, -4.4f, 5.5f};
printf("=== 基本内存布局打印 ===\n");
PRINT_MEM(test_data, sizeof(test_data));
printf("\n=== 高级内存打印(带地址偏移和ASCII) ===\n");
PRINT_MEM_ADV(test_data, sizeof(test_data));
printf("\n=== 按字节长度拼接打印 ===\n");
PRINT_MEM_BY_SIZE(test_data, sizeof(test_data), 4);
printf("\n=== 按数据类型打印 ===\n");
PRINT_MEM_AS_TYPE(int_data, sizeof(int_data), int32_t);
printf("---\n");
PRINT_MEM_AS_TYPE(float_data, sizeof(float_data), float);
printf("\n=== 直接结构体打印(无需注册!) ===\n");
// 创建测试结构体
example_struct_t test_struct = {
.id = 12345,
.score = 95.5f,
.name = "Hello World!",
.flags = 0xABCD,
.timestamp = 123456789.123
};
complex_struct_t complex_struct = {
.version = 2,
.checksum = 0xDEADBEEF,
.tag = "TEST",
.values = {100, -200, 300, -400},
.nested = test_struct
};
simple_struct_t simple_struct = {
.a = 'X',
.b = 999,
.c = 123
};
printf("--- example_struct_t ---\n");
PRINT_STRUCT(&test_struct); // 最简单用法
printf("--- complex_struct_t ---\n");
PRINT_STRUCT_T(&complex_struct, complex_struct_t); // 带类型名显示
printf("--- simple_struct_t ---\n");
PRINT_STRUCT(&simple_struct);
printf("\n=== 数组结构体演示 ===\n");
example_struct_t struct_array[2] = {
{1, 80.5f, "First", 0x1111, 111.111},
{2, 90.5f, "Second", 0x2222, 222.222}
};
PRINT_MEM_AS_TYPE(struct_array, sizeof(struct_array), example_struct_t);
printf("\n=== 指针结构体演示 ===\n");
example_struct_t *struct_ptr = &test_struct;
PRINT_STRUCT(struct_ptr);
return 0;
}